Regulation of plant light harvesting by thermal dissipation of excess energy.

نویسندگان

  • Silvia de Bianchi
  • Matteo Ballottari
  • Luca Dall'osto
  • Roberto Bassi
چکیده

Elucidating the molecular details of qE (energy quenching) induction in higher plants has proven to be a major challenge. Identification of qE mutants has provided initial information on functional elements involved in the qE mechanism; furthermore, investigations on isolated pigment-protein complexes and analysis in vivo and in vitro by sophisticated spectroscopic methods have been used for the elucidation of mechanisms involved. The aim of the present review is to summarize the current knowledge of the phenotype of npq (non-photochemical quenching)-knockout mutants, the role of gene products involved in the qE process and compare the molecular models proposed for this process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A major light-harvesting polypeptide of photosystem II functions in thermal dissipation.

Under high-light conditions, photoprotective mechanisms minimize the damaging effects of excess light. A primary photoprotective mechanism is thermal dissipation of excess excitation energy within the light-harvesting complex of photosystem II (LHCII). Although roles for both carotenoids and specific polypeptides in thermal dissipation have been reported, neither the site nor the mechanism of t...

متن کامل

Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts.

Plants must regulate their use of absorbed light energy on a minute-by-minute basis to maximize the efficiency of photosynthesis and to protect photosystem II (PSII) reaction centers from photooxidative damage. The regulation of light harvesting involves the photoprotective dissipation of excess absorbed light energy in the light-harvesting antenna complexes (LHCs) as heat. Here, we report an i...

متن کامل

Energy dissipation: new role for a carotenoid protein in cyanobacteria.

Photosynthetic organisms have developed multiple mechanisms to protect the photosynthetic apparatus from high light stress. Plants and algae exhibit thermal dissipation of excitation energy in the membranebound light-harvesting complex of photosystem II (LHCII). In most species of cyanobacteria, which lack LHCII, light is captured by the phycobilisome, a membraneextrinsic complex attached to th...

متن کامل

Increased air temperature during simulated autumn conditions does not increase photosynthetic carbon gain but affects the dissipation of excess energy in seedlings of the evergreen conifer Jack pine.

Temperature and daylength act as environmental signals that determine the length of the growing season in boreal evergreen conifers. Climate change might affect the seasonal development of these trees, as they will experience naturally decreasing daylength during autumn, while at the same time warmer air temperature will maintain photosynthesis and respiration. We characterized the down-regulat...

متن کامل

Zeaxanthin binds to light-harvesting complex stress-related protein to enhance nonphotochemical quenching in Physcomitrella patens.

Nonphotochemical quenching (NPQ) dissipates excess energy to protect the photosynthetic apparatus from excess light. The moss Physcomitrella patens exhibits strong NPQ by both algal-type light-harvesting complex stress-related (LHCSR)-dependent and plant-type S subunit of Photosystem II (PSBS)-dependent mechanisms. In this work, we studied the dependence of NPQ reactions on zeaxanthin, which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical Society transactions

دوره 38 2  شماره 

صفحات  -

تاریخ انتشار 2010